分子是1的分数,叫单位分数。古代埃及人在进行分数运算时。只使用分子是1的分数。因此这种分数也叫做埃及分数,或者叫单分子分数。(如图)
埃及同中国一样,也是世界上著名的文明古国。人们在考察古埃及历史时注意到象阿基米德这样的数学巨匠,居然也研究过埃及分数。本世纪一些最伟大的数学家也研究埃及分数,例如,沃而夫数学奖得主,保罗-欧德斯,他提出了著名的猜想4/n=1/x+1/y+1/z.难倒了世界上第一流的数学家。当9个面包要平均分给10个人的时候,古埃及人不知道每个人可以取得9/10,而是说每人1/3+1/4+1/5+1/12+1/30。真叫人难以想象,你连9/10都搞不清楚,怎么知道9/10=1/3+1/4+1/5+1/12+1/30。所以几千年来,数学史家一直坚持认为,古埃及人不会使用分数。年,苏格兰考古学家莱登买到了一份古埃及草纸文件,经过鉴定这是繁生于尼罗河泛滥形成的池塘和沼泽地里的草制成的纸,成文年代约在公元前年。
那么,古埃及的人们,是怎么算的呢?首先,把2个物品分成4个1/2,先给每个人1个1/2,剩下的1个1/2再分成3等分,均分结果,每人分到1/2加1/2的1/3,也就是1/2+1/6=2/3。这份至今保存在大英博物馆的“莱登”草纸,用很大的篇幅记载着将真分数分解成单分子分数,这种运算方式,遭到现代数学家们纷纷责难,认为埃及人之所以未能把算术和代数发展到较高水平,其分数运算之繁杂也是原因之一。
现代数学已经发展到十分抽象和复杂的程度,而埃及分数却是这样粗糙,在人们的记忆里早该烟消云散了,然而,它产生的问题直到今天仍然引起人们的重视。
四川大学已故老校长柯召写道:“埃及分数所产生的问题有的已成为至今尚未解决的难题和猜想,他们难住了许多当代数学家”。柯召本人至死都没有能够证明这个猜想。
一个古老的传说是:
老人弥留之际,将家中11匹马分给3个儿子,老大1/2,老二1/4,老三1/6。二分之一是5匹半马,总不能把马杀了吧,正在无奈之际,邻居把自己家的马牵来,老大二分之一,牵走了6匹;老二四分之一,牵走了3匹;老三六分之一,牵走了2匹。一共11匹,分完后,邻居把自己的马牵了回去。即11/12=1/2+1/4+1/6。
奇妙的埃及分数终于调动自己的潜在难度击败了敢于轻视他们的人们。并且给与嘲笑他的人以难堪的回答。
下载了一个埃及分数计算软件,供大家参考(在百度云上,第一次用不知大家能否下载)